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Talk Outline
• An Introduction

• Frequency Modulation

• An AM-FM Model for M-Mode Ultrasound 

• Fast AM-FM Demodulation Implementation

• Discrete-Space Orthogonal FM Transforms
• application to the multidimensional DFT

• Concluding Remarks
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The image and video Processing and 
Communications Lab (ivPCL)  founded 2000

Ph.D. students (3 advanced to candidacy):
S. Cai: “Tumor Growth Measurement in Lung Cancer Imaging”
J. Kern: “Multispectral Image Registration using Mutual Information”
P. Rodriguez V.: “High-Performance Signal and Image Processing”

M.S. students (6):
J. Ramachandran: “Hierarchical Lung Image Segmentation”
H. Muralidharan: “Medical Imaging Models with Applications to the 

Lung and the Heart”
S. Barriga:           “Signal Detection in Retinal Video”
H. Yu: “3-D Ultrasound”
A. Vera: “Real-time Video Processing using FPGAs”
Grant Martin:      “3-D CT and Chest Radiograph Image Analysis”
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Paul Rodriguez V.’s Poster 
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Songhe Cai’s Poster
3-D Tumor Reconstruction from CT

Threshold at level=100. Threshold at level=170.

Early lung tumor growth detection.



ivPCL Honggang Yu’s Poster
3-D Reconstruction from Freehand 

Ultrasound
Close agreement to 
cylinder ground truth.

Example demonstrates ability
to reconstruct 3-D objects
accurately, from arbitrary
slices (freehand).
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Image Processing in the EECE Department 
Masters and Ph.D. programs in Electrical and Computer Engineering:
• Image Processing track, some related courses:

EECE 533    Digital Image Processing
EECE 595.1 Medical Imaging
EECE 595.2 Advanced Topics in Image Processing

• Computational Intelligence track, some related courses:
EECE 517 Pattern Recognition
EECE 547 Neural Networks

• Some other related courses:
EECE 433    Computer Graphics
EECE 516    Computer Vision
EECE 595.3 Detection and Estimation Theory
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An Introduction to AM-FM
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Related Research
Originated by Teager and Kaiser for Speech signal analysis
Continued by three main groups:
• Bovik and his students (Havlicek, Pattichis, Sanghoon, …)

• very low bitrate video coding (MPEG-4, H.263)
• error resilient and perceptually optimal
• texture completion using Reaction-Diffusion PDEs
• fingerprint classification, latent print analysis (Pattichis)
• shape from texture, …

• Maragos and his students (Potamianos, Sabathanam, …)
• 1-D, Speech signal analysis

• Quatieri (1-D, Speech signal analysis)
• Many joined! (1-D, 2-D)
Also, in 1-D, time-frequency analysis and Communications theory.
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AM-FM Transforms
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A Summary of AM-FM Demodulation

Step 1. Apply bandpass channel filters

Step 2. Compute AM-FM parameters over each channel

Step 3. Reconstruct AM-FM image using channels that
produce maximum amplitude estimate (pixel adaptive)

For Teager-Kaiser approach, use maximum energy estimate
to select bands.



ivPCL Gabor filter 
centers



ivPCL

AM-FM Demodulation 
Using Teager-Kaiser Energy 

Operators
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AM-FM Demodulation 
Using Hilbert Approach
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Basic Examples
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Woodgrain image example

Instantaneous frequency vectors shown (log-scaled and subsampled).



ivPCL

Fingerprint Classification

NIST                                  FM                        
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Electron micrograph of human skeletal muscle
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Histogram distributions of AM-FM parameters
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Segmentation

a(x,y)<20Original Image

( ) 15.0,08.0 ≤∇≤ yxφ( ) 046.0, ≤∇ yxφ
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Bayesian Segmentation and ASF Filtering using 
AM-FM Parameters

Nemaline myopathy Mitochondrial myopathy
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Recognition Accuracy

Type of myopathy

Nemaline
Tubular 

Aggregates Mitochondrial

Number of
cases

2 1 4

Number of
regions 10 6 10

Recognition
accuracy 84% 78% 75%
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Multidimensional Frequency 
Modulation
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The Instantaneous Frequency Gradient Tensor
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Phase Modulation
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Eigen Decomposition of the IFGT
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Frequency Modulation Bounds
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Woodgrain image results
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Woodgrain image results (Contd)
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A fingerprint example
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Separability Assumption:
Slowly-rotating eigenvectors
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An AM-FM Model 
for M-Mode Ultrasound Images
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Basic Reflection Imaging System

Transducer acts as both a transmitter and receiver of acoustic waves.
Figure taken from Page 174 of  “Medical Imaging Systems” by Albert Macovski.
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M-mode

Slide provided by M.B. Goens, M.D.
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Ground Truth over an M-mode image

•Near field 
•Anterior RV wall
•RV chamber
•Interventricular septum
•LV chamber with some
mitral valve apparatus
•LV posterior wall
•Bright epicardium

Image annotated by M.B. Goens, M.D.
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An AM-FM Model I

We model M-mode images using an AM-FM series

where         ,             denotes the amplitude function,
denotes the phase function, and        denotes the 

AM-FM series coefficients.

( ) ( ) ( )[ ]∑=
n

n tyntyaCtyf  ,cos , , φ

xt = ( )tya  ,
( )ty  ,φ nC
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An AM-FM Model II

will track the brightness variation due to “material change”, 
reflected in changes in the reflectivity of the material.

will track the curvilinear coordinate represented by wall 
boundaries.

will track the AM-FM harmonics over the curvilinear 
coordinate system represented by the wall boundaries.

( )tya  ,

( )ty  ,φ

( ) ( )[ ]tyntya  ,cos , φ
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Fast AM-FM Demodulation 
Implementation
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SIMD-FFT (Paul Rodriguez V.)
Comparison between the FFTW (scalar implementation) and
SIMD-FFT

Complex input data – Linux (Intel Architecture)
Improvement range 89% - 374%

PERFORMANCE IMPROVMENT OF THE SIMD-FFT 
WHEN COMPARE TO THE STANDARD FFTW 

(COMPLEX INPUT DATA)
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2D SIMD-FFT (Paul Rodriguez V.)
Comparison between the 2D FFTW (scalar implementation) 
and 2D SIMD-FFT

Complex input data – Linux (Intel Architecture)
Improvement range 87% - 330%

PERFORMANCE IMPROVMENT OF THE 2D SIMD-FFT WHEN COMPARED 
TO THE STANDARD 2D FFTW 

(COMPLEX INPUT DATA - PENTIUM4)
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Separable Filter Design
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2-D Magnitude Plots

“Analytic Image”

Filter 1 Filter 2
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Filtered images through first filter

Negative real image Negative imaginary image
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AM-FM Estimates through first filter

Amplitude Image FM image
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AM-FM Reconstruction over First Filter

Original image                AM-FM reconstruction over filter 1.
Note black lines over regions where QEA “fails”.
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Filtered image through second filter

Real Image                                 Imaginary Image
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AM-FM Estimates through second filter

Amplitude Image FM Image
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AM-FM Reconstruction over Second Filter

Original image AM-FM Reconstruction over filter 2.
Note black lines over regions where “QEA” fails.
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AM-FM Reconstructions over Both Filters

Reconstruction where QEA “holds”    Reconstruction with smoothing
Note the limited number of regions over regions where QEA “fails”
where QEA  “fails”.
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AM-FM Reconstruction vs Original Image

Original image                             Reconstruction with smoothing
over regions where QEA “fails”
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AM-FM Reconstruction
vs Harmonics Image (illustrating walls)

Original image                          Sum of the first 20 FM harmonics
thresholded and segmented
for (first filter only)( ) 100 , >yxa
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Multidimensional Discrete-Space 
Orthogonal FM Transforms
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Discrete-Space FM Transforms
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FM Transform Theorem
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Orthogonal FM Transform Relation to DFT
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Signals with Compact Spectra
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Matching Arbitrary Signals
(including Signals with compact Spectra)
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JPEG Modified for Implementing FM Transform



ivPCL

One-bit Permutations for DCT Target
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Two-bit Permutations for DCT Target



ivPCL Spectral Energy Compaction
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Orthogonal FM Transform: 
Some Image Compression Results
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Future work in Multispectral 
Image Compression?

Hypothesis
If the pixels represent the same structure, then
they require the same permutation irrespective
of the spectral band.

Hence, high compression should be possible by
Effectively encoding permutation changes between
bands.
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Application to
Multidimensional Discrete 

Fourier Transform and 
Computerized Tomography



ivPCL The Transmission Model

A

B

.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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The Fourier Slice Theorem

space domain frequency domain

object

Fourier transform

projection

Each Projection can be used to compute a line spectrum in 
the frequency domain.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.



ivPCL Parallel Projections

By taking projections at multiple angles, it is possible to 
reconstruct an image, and invert the projection operation.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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Frequency-Domain Sampling
v

u

To reconstruct the image, interpolate to estimate the 2-d spectrum,
and take the inverse 2-d FFT.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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Three Directions of Interest

For Horizontal Frequencies:

For Vertical Frequencies:

For Diagonal Frequencies:
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Covering the DFT Spectrum
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Two-Dimensional DFT Computation

Cover         (in two dimensions) using:

Only                              1-D FFTs (for square images).3 NNN
+=

S
( ){ }
( ){ }

21

22

11

2 , ,4 ,2 ,0   ,1

1 , ,2 ,1 ,0  1 ,

VVV
NiiV

NiiV

C ∪=

−==

−==

…

…

22



ivPCL

Three-Dimensional DFT Computation

Cover         (in three dimensions) using:

Only                                            1-D FFTS  (for                      images).
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Minimum Cardinality Result I

Theorem 2.  The cardinality of         ,  is minimal in 

the sense that: 

There does not exist           that covers      ,   yet  

satisfying                    .

CV

'
CV S

'
CC VV >

The 2-D and 3-D Directional Decompositions Exhibit the 
Minimum number of  1-D FFTs.
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Minimum
Cardinality Result II

• Each FFT can be modified to compute the spectrum along 
spectral frequencies that were not computed before.

• Minimal computation can be achieved by requiring that the 
number of computed DFT frequencies is equal to the 
number of possible DFT frequencies in the image.

Eg: We  use             “Decimated in Frequency” FFTs to 
compute a total of         discrete frequencies.

2/3N
2N
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Concluding Remarks

• AM-FM analysis holds great promise for 
continuous-scale analysis problems
(eg: M-mode ultrasound, …)

• Multidimensional DFT work will be applied in 
image restoration, fast, but also:

Numerical accuracy: 
uses a single FFT per discrete frequency, 
irrespective of dimension!
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